AD-A131 476 DOCUMENTATION OF CONCURRENT PROGRAMS(U)- GENERAL
ELECTRIC CO ARLINGTON VA DATA AND INFORMATION SYSTEMS
D A BOEHM-DAVIS ET AL. JUL 83 GEC/DIS/TR-83-388200-7

UNCLASSIFIED N0O0014-79-C-0595 F/G 9/2

b s

2 £ & =
=

T

o 5 e

o

Hizs s, s

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS.1963-A

ADA 131476

DOCUMENTATION OF
CONCURRENT PROGRAMS

DEBORAN A. BOEHM-DAVIS
ANDREW M. FREGLY

83 08 15 004

R S

T I~

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY
PRACTICABLE. THE COPY FURNISHED
TO DTIC CONTAINED A SIGNIFICANT
NUMBER OF PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

l Unclassified
SECURITY CLASSIFICATION OF TMIS PAGE (When Data Entered)
l REPORT DOCUMENTATION PAGE BEPOEE COBE EToig FORM
[T REPORY NUMBER 2 oovT ACCESSION u‘?; 3. RECIPIENT'S CATALOG NUMBER
i TR-83-388200-7 AD-AI3Y (o
8. TITLE (end Subtitle) 8. TYPE OF REPORT & PERIOD COVERED
Documentation of Concurrent Programs Technical Report
l 6. PERFORMING ORG. REPORT NUMBER
; GEC/DIS/TR-83-388200-7
.) [T AUTwoR(e) T CONTRACY OR GRANT NUMBER(4)
i x Deborah A. Boehm-Davis & Andrew M. Fregly N00014-79-C-0595
l “Oata & Information Syetem " ARV IRE e T
General Electric Company 61153N 42; RR04209;
1755 Jefferson Davis Hwy., Arlington, VA 22202 RR0420901; MR 196-160
l 1. CONTROLLING OFFICE NAME AND AOORESS 12. REPORT DATE
' Engineering Psychology Group, Code 442 July 1983
Office of Naval Research 3. NUMBER OF PAGES
1 Arlington, Virginia 22217 59
[TT MONITORING AGENCY NAME & ACORESS(/! different from Controlling Otfice) | 18. SECURITY CLASS. (of thie report)
o same Unclassified
' T¥e DECL ATHFICATION/ DOWNGRADING
. » SCHEDULE

- J7¢. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. OISTRIGUTION STATEMENT (of the abstract sntered in Bleck 20, |1 different fresm Repert)

A same A

‘ Y,
e
18. SUPPLEMENTARY NOTES g

Technical Monitor: Dr. John J. O'Hare

19. XEY WORDS (Continue on reverse side if y and identify by block number)

Software engineering, Software experiments, Modern programming practices,
Software documentation, Petri nets, Resource diagrams, Program design
languages (PDLs), Software human factors

% ABDSTRACY _(Ccnmnn an reverae slde if necessary and identily by bleck number)

Previous research on the effectiveness of documentation for sequential
programs has suggested that the most effective documentation aids are those
which provide clear control-flow information. The current research extends
this work into the domain of concurrent processing programs to determine
whether the documentation for these programs requires additional information
regarding interprocess communications. In this research, programmer
performance was examined on a modification task, where modifications were made 'S

row'ys 1473 moimon or 1 nov 6813 oesoLETE ¢ Unclassified

$/N 0102-014- 6601 |

”

Gk ON Om e bud b

SECURITY CLASSIFICATION OF TNIS PACGE s Entered) g :

S T et s S ——————

% Unclassified

e LURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

S>¥o either the data structure or control flow of the program. Taken as a
whole, the data suggest that the most appropriate type of documentation for
concurrent processing may be different than the most appropriate type of
documentation for strictly sequential processing. For modifications to
concurrent processing programs, at least for simple programs and simple
modi fications, it is not crucial whether interprocess communications or
control-flow information is highlighted in the documentation format. For
more complex problems, it would appear that control-flow information is not
necessary, and, in fact, may interfere with making the modification. These
data are especially interesting at this time, when PDLs are becoming a

de facto standard in the software industry. Further, they suggest that
industry may be preparing to adopt, as a standard, a documentation format
which will not necessarily provide them with the greatest possible benefit.

Unclassified

® []
’) SECURITY CLASSIFICATION OF THIS PAGEWhen Dete Entered)

g p—rper-ee e -2 S S

' GEC/DIS/TR-83-388200-7

C o rtertl

= R g e E g TP PR, s 2RI T T Paas -

DOCUMENTATION OF
CONCURRENT PROGRAMS

DEBORAH A. BOEHM-DAVIS
ANDREW M. FREGLY

Software Management Research & Ada Development
Data & Information Systems
General Electric Company
1755 Jefferson Davis Highway
Arlington, Virginia 22202

Submitted to:

Office of Naval Research
Engineering Psychology Group
Arfington, Virginia

!‘_;:\" : fs “'x'-Y‘ /
Contract: N00014-79-C-0595 2 |

Work Unit: NR 196-160

JULY 1983
) i
! !
Approved for public release; distribution uniimited. Reproduction in whoie or in part
l Is permitted for any purpose of the Unitad States Government.
v. N ot G LS DAY VEr U RSRVOE S P OV S ST T O L e T St ot e el Ry R 3

~

TABLE OF CONTENTS

Title

INTRODUCTION LRI B I B A BB B A A A I B B N A A B BN B S B B R SR S B A B R R B NI N B S Y Y

METHOD @ 6 9 0. 00 0 0 4 20000 059 %SO 0 P PO PP PP L E 0O E 0N P OE e e IGO0
Matetials LRI A A I LA B A A R R K K B IR B B B AN BN I B R SR R B B B Y B IR B BRI I I BT S IR B B AE 3K B N)

PrOblemS © 8 6 0 9 0000050000900 000802 00E0P0CELGLIEELINIBEEOIGELOIEGOIEOGIEETN

MOdificatiOnS ® 00 0 000 9200060509 0000000000000 EORGIOOCE
Documentation FOl’.'matS 4 © Q0 0 0 0 860 0060000850060 08508000000t
Supplemental MaterialsS ...cceceeseossscsocsocsssnsscnasosacss

Design LI R A A A I N I B A S B R B SN B B B N B I S B B AR B A N AN NS I B I BN N BRI SRR RN B)

PartiCipantS Q..'!l.lc.'l..'.Ofvc..'...00..OO.QC.OOD..I.I0.0..-.

L N Y A I S TS I Y |

Ptocedure LR A A I R A B R AR AR A LI B A I B I R S A A A N 2 I B B R B T I B R B B B N R A)

RESULTS ® @ % 0 8 9 09 5 0 000 E PGB L LT OO0 L0 00 E NS0 S OLEeLESELEOIEIEOAEDNTCE
ModifiCation Time #0080 ee0s 0 es00cet N st ce0nssse0ss st csesscs a0 e 0

Ertors LR A A I L IR I I A A I B B B A A B B A B B B I B R Y S S IR R R N B BB R R I I RN B S N N BN B A Y

Preferences for Documentation FOrmat ..ccceceacccscssnscccsccas

EXPErienti@l FACLOLS «oveeeseeoensseaceeoassssaeessososacennsss

DISCUSSION L A A A I A B SR R BN A B Y BN B Y B R A BRI S N B B B B I]

ACKNOWLEDGEMENTS S & & & 2 0 4 5 8 0 0 O OB E S D N T NS 900 e

REFERENCES LR R R R I S R A A A IR B B B BN B R A S A A I N I I B BN B Y S R RCRE B B R S A IR B R B

APPENDIX ® 8 0 0 8 60 0 008 9 800 500 PO O S0 0900S LN NS00 00 eI ePOEOEROENOTOE SO

TECHNICAL REPORTS DISTRIBUTION LIST .ccvecescsacvrccscesncnnsescn

I B

t—-e

oy Pt

INTRODUCTION

A complete software package always includes documentation.
Although its importance is often overlooked, documentation may be
the only source of program design information. Major tasks in the
software life «cycle, =such as design, coding, testing and
maintenance, are often performed by different individuals. Lientz
and Swanson (1979} found that, typically, only about half of a
software system's maintenance personnel had been involved in its
development. Poor documentation techniques can, therefore,
dramatically increase labor costs throughout the labor intensive

software life cycle by making both development and maintenance tasks
more difficult.

Recent research in this area (Boehm-Davis, Sheppard, & Bailey,
1982; Sheppard, Kruesi, & Bailey, in press; Sheppard, Kruesi, &
Curtis, 1981) has been directed toward determining performance on a
set of software tasks as a function of the type of documentation.
In these studies, programmer performance was examined on
comprehension, c¢oding, debugging, and modification tasks as a
function of the type of documentation provided. The documentation
formats were constructed from the factorial combination of three
types of symbology with three types of spatial arrangement. These
formats were chosen because they represent the primary dimensions
for categorizing the way in which available documentation aids
configure the information they present to programmers (Jones,
1979). The three types of symbology in which information was
presented consisted of normal English, abbreviated English (such as
program design language), and ideograms. The spatial arrangements
of the information used in these experiments were sequential,
branching, and hierarchical. While each of the four tasks pursued
in this research produced slightly different results, there was a
general trend towards the superiority of succinct symbology and a
branching spatial arrangement in each.

The current research extends the previous investigations on
purely sequential programs into the domain of concurrent programming

by examining performance on a modification task. Concurrent
processing refers to the simultaneous processing of two (or more)
portions of the same program. Concurrent processing may be carried
out by separate processors in a single computer, separate processors
in several <computers (distributed processing), or it may be
simulated by time-sharing within one processor of a computer. The
use of concurrent processing in a program presents a problem in
representing those processes in the documentation. Most current
documentation formats were designed for sequential program
representation, and may not be suitable for the representation of
parallel processing. It is especially important to represent this
parallelism because, when a task is split into parallel parts, two
or more of these paths may need to access the same resources. The
documentation should, therefore, provide explicit information on the
relationships between processes. If more than one process requires
access to the same piece of information, protection of the data may
be required to assure its integrity. Thus, programs using
concurrent processing must be constructed and documented carefully
to ensure orderly access to and sharing of resources.

The investigation of documentation for concurrent processing is
especially important since this form of processing is gJgenerally
considered to be more complex than strictly sequential processing
and it is used extensively in embedded computer systems which can
monitor and control a number of hardware interfaces simultaneously.
Examples of embedded. applications include systems for missile
guidance, aircraft flight control, and multiplexing of communication
channels. The current research will investigate the usefulness of
different forms of documentation for this kind of processing.

The task chosen for this experiment was a modification task.
Recent reports have asserted that almost 70% of costs associated
with software are sustained after the product is delivered. These
costs generally are spent in modifying the original program due to
changing requirements and correcting errors, and these figures
suggest that even .small improvements in program maintainability

-2-

. e e b - aidiesade T oy V38 ORI RCR 0 Tt 2.3 SN 05 A = s S RIR L B 6, 3 VAT S n e B

could be translated into substantial time and cost savings. For
this reason, it is important to investigate modification performance.

Also, making a modification to an existing program requires
several kinds of software skills: an understanding of how the
program works; the ability to generate the code required to make
changes; and the ability to debug these changes. Thus, it 1is
important to study the modification task; it encompasses more
general skills that are required for other software-~related tasks.

The previous research suggested that the display of control flow
was important in the documentation of sequential programs. While
the display of control flow should remain important in documenting
concurrent processing, it may be egqually important to document the
resource sharing among processes. The forms of documentation used
in this experiment highlight these different types of information.
While all of the documentation formats contain both control-flow and
resource-sharing information, the two types of information are
differentially emphasized. The first form of dJdocumentation is a
standard program design language (PDL). The emphasis in PDLs is on
the control flow rather than on the resource sharing of a program
and the PDLs use abbreviated English in a sequential arrangement.
The second form of documentation is a resource diagram, where the
emphasis is on providing information about the sharing of resources
rather than on control £flow. Resource diagrams use abbreviated
English in the communication circles and natural language in the
process boxes; their spatial arrangement is most similar %o the
branching arrangement used in our earlier research. The third form
of documentation combines both types of information by using Petri
nets. Petri nets allow an equal emphasis on control flow and
resource sharing. The nodes in the diagram show which resources are
required for a task while the constrained language descriptions
contain control-flow information. The Petri nets also use a spatial
arrangement most similar to our branching arrangemenf.

The structure of the problem solutions was also manipulated in
this research. Different design methodologies currently in use take

o

different approaches to structuring programs. While some
methodologies tend to focus on data structures in decomposing
problems, others focus on functional decomposition. This may have
an impact on the effectiveness of different documentation formats.
The research described here examined the effectiveness of different
documentation formats using problems which were structured to

represent solutions which might be produced by commonly-used design
methodologies.

METHOD
Materials

Problems. Three experimental problems and one practice problem
were created for use in this experiment. The experimental problems
were a message distribution system, an air traffic display, and a
text search problem. The practice problem was a message encryption
system. The algorithms used to solve the problems were chosen such
that they each represented approximately the same overall 1level of
control-flow complexity (as indicated by the McCabe (1976) metric).
Each problem was coded in three ways. One version coded the problem
such that it had a complex data structure and a simple control flow;
one version coded the problem such that it had a simple data
structure and a complex control flow; and for one version, the data
structure and control flow each carried an intermediate level of
complexity.

Modifications. Two modifications were constructed for each
problem. one involved a change in the data structure of the
problem; the other involved a change in the control flow of the
problem. For example, the data-structure modification for the
message distribution program (shown K in the appendix) required the
programmers to change the length of the message. The control-flow
modification for the same problem required programmers to change the
algorithm so that when a message was entered with a particular
message code, all of the readers would receive the message.

Documentation formats. Three documentation formats were created
for use in this experiment: Petri nets, resource diagrams, and
PDLs. Examples of each of these forms of documentation are shown
for all of the problems in the appendix. In the Petri nets (based
on ideas in Peterson, 198l), each large box represents a process in
the system. The circles represent conditions which must be
satisfied before processing can continue. Information listed on the
lines between circles represent actions that are being carried out
or information that is being passed between processes. In the

o

resource diagrams (based on ideas in Shaw, 1974), the boxes
rep:esent. processes. The circles represent information which is
being passed between processes, and the arrows indicate the
direction in which information 1is being passed. The PDLs use
standard notation, except for the use of "send" and "accept" which
were the terms used to represent the passing and receiving of
communications between and from processes.

Supplemental Materials. Each program was accompanied by four

supplemental materials: a program overview, a data dictionary, a
program listing, and a 1listing of the expected output from the
program. The program overview contained the requirements, a general
description of the program design, and the modification to be
performed for each program. The data dictionary contained the
variable names, an English description of the variables, and the
data type for each wvariable. The program 1listing was a paper
printout of the FORTRAN code which was 1identical to the code
presented on the CRT screen. The listing of the expected output
provided the programmers with the output expected from a correct run
of the program; this allowed them to determine where they had gone
wrong if their modification to the program did not run correctly.

Design

The experimental design used in this experiment was a 3x3x3x2
split-plot partially confounded design (based on Davies, 1956;
Winer, 1971). The within-subject factors were type of documentation
(Petri net, resource diagram, PDL), problem (text search, air
traffic display, message distributioﬁ), and problem structure
(complex data structure, complex control flow, intermediate). Type
of modification (data structure, control flow) was a between-
subjects wvariable. Each programmer modified three o0f the twenty-
seven possible combinations of documentation, problem, and problem
structure; each programmer made three modifications of the same
type. For example, a programmer might modify the data-structure
version of the text search program using a Petri net, the control-
flow version of the air traffic display program using a resource

diagram, and the intermediate version of the message distribution

program using a PDL. The order in which the programmers were
observed under each treatment condition was randomized independently
for each programmer.

Participants

The participants in this experiment were 72 professional
programmers from four different 1locations. All were General
Electric Company employees. The programmers averaged 8.4 years of
programming experience and were familiar with an average of 5.7

programming languages. All of the programmers had previous
experience with FORTRAN,

Procedure

Prior to the experiment, the participants were Jiven a one-~hour
training session in which they were shown examples of each type of
documentation format. The experimenter also described the procedure
for using the text editor to modify the programs during this session.

Experimental sessions were conducted at CRT tarminals on a VAX
11/780. Each participant modified all three of the programs, which
were written in FORTRAN-77, using only one of the documentation
formats for each. The participants were first asked to enter the
changes from the practice problem which was used during the training
session to familiarize them with the operation of the experimental
system and its editor. Following the practice program, the three
experimental programs were presented.

For each program, the participants were asked to first indicate,
on the documentation format, the locations in the program where
changes needed to be made and then to actually make the
modifications using the editor. An interactive data collection
system prompted the participants throughout the session. The system
recorded each call for an editor command (e.g. ADD, CHANGE, LIST, or
DELETE) . From these, the overall time to modify and debug the

I programs was calculated by summing the times from the individual

editing sessions; the number of errors made was also calculated.

The time required for compiling, linking, and executing the programs

.. was not included in these measures. The programmers were required

to continue working on a program until it was <completed

successfully. The programmers were allowed to take breaks between
programs.

B s

Following the experiment, the programmers completed a
questionnaire about their previous programming experience. The
information requested included number of years of experience and
number of programming languages known. The participants were also
asked to choose which documentation format they 1liked most and
least, and to rate how much they relied on each documentation format.

s T e TR i s St . sk A e AT, ABILA® T a1 5 At . it o, RO am 4

RESULTS

Modification Time

The participants required an average of 23 minutes to modify
each program. This represents the amount of time studying the
program, deciding on the appropriate changes to make the modifica-
tion, and using the text editor (i.e., the total time spent at the
terminal less the time for compiling 1linking, and executing the

program) .
MODIFICATION PROBLEM DOCUMENTATION FORMAT
RESOURCE | POL PETAI TovAL
MESSAGE
DISTRIBUTION 19.8 22.1 21.8 21.2
AIR
CONTROL FLOW TRAFFIC 21.3 25.3 26.8 24.5 26.0
TEXT
SEARCH 28.9 301 31.7 32.2
MESSAGE
DISTRIBUTION 13.0 12.2 14.9 13.4
AIR
DATA STRUCTURE TRAFFIC 21.0 23.3 23.9 22.7 20.6
TEXT
SEARCH 20.9 22.8 33.1 25.6
TOTAL 20.9 22.7 26.4 23.3

Table 1. Mean Time to Complete Moditication Task (in Minutes)

Table 1 shows the mean times for each combination of documenta-
tion format, program, and type of modification. An analysis of
variance showed that, overall, it took programmers less time to make
a data-structure modification (21 minutes) than it did to make a
control-flow modification (26 minutes) (F (2,64) = 12.64, p <.001).
This analysis also showed that, overall, resource diagrams required
the least amount of time (21 minutes), PDLs required an intermediate
amount of time (23 minutes), and Petri nets required the greatest
amount of time (26 minutes) (F(2,95) = 7.31, p <.001). A signifi-
cant interaction was also found between problem and documentation
format (F(4,95 = 2.74, p <.05). An examination of the data
suggests that for the message distribution and air traffic display

e Syt PR i A

problems, there were no significant differences in modification
times for resource diagrams versus PDLs or for PDLs versus Petri
nets. There does appear to be a significant difference between
resource diagrams and Petri nets for both problems, however. For
the text search problenm, the differences between paicrs of
documentation formats all appear to be significant.

There were also large differences in the amount of time required
to modify the programs (control flow and data structure). The
message distribution program required the least amount of time to
modify (17 minutes), the air traffic display program required an
intermediate amount of time (24 minutes), and the text search
program required the greatest amount of time (29 minutesi. The
analysis of variance supported this conclusion (F(2,95) = 32.30,
p <.001). This pattern of results mirrors the complexity ratings of
the programs, as measured by the McCabe metric. While the programs
were chosen to be roughly equal in overall complexity, there were
some differences among their ratings, which followed the pattern of
the time data; the message distribution program had an overall
complexity rating of 14, the air traffic display program had an
average complexity rating of 15, and the text search program had an
average complexity rating of 23.

There was no effect of the structure of the programs (simple
control-flow with a complex data structure, intermediate control
flow and data structure, or simple data-structure with complex
control-flow) on modification time (F(2,95) < 1), and it did not
interact with any of the other variables.

Errors

For programs that did not compile or run successfully on the
first submission, the programmers' editing activities for subsequent
submissions were analyzed to determine the number of errors. Table 2
shows the mean number of errors for each combination of documenta-
tion format and type of modification. The number of errors was low;
in addition, the majority of the errors (63%) were syntax errors

--.-.-"-'-!"-—--'.'-‘-"!I-muuq-n—u____1r,_‘

rather than semantic errors. (For this analysis, misspellings of
variable names, starting a line in the wrong column, and other such
errors were categorized as syntax errors.) Due to the low number of
semantic errors, no further analysis of these data was carried out.

MODIFICATION PROBLEM DOCUMENTATION FORMAT
RESOURCE | POL PETRI | TOTAL
MESSAGE
DISTRIBUTION -8 9 7 8
AIR
CONTROL FLOW TRAFFIC 1.2 1.3 8 11
sgﬁﬁ{m 1.1 1.4 17 | 14
MESSAGE
DISTRIBUTION A 0 1 1
AIR
DATA STRUCTURE TRAFFIC 4 1 8 1
TEXT
SEARCH 4 7 8 6
" TOTAL 7 9 8 8

Table 2. Mean Number of Errors

Preferences for Documentation Format

Across the three problems, the programmers received each type of
documentation format. On the questionnaire, they were asked ¢to
state which documentation format was easiest to use and which was
hardest to use. They were also asked to rate how much they relied
on each version of documentation format on a seven-point scale (from
0 = not at all to 6 = constantly throughout). Tables 3 and 4 show
the number of people choosing each documentation format as easiest
or hardest to use as a function of type of modification made. 1In
the control-flow group, two programmers failed to indicate which
format had been easiest to use; a third programmer failed to
indicate which format had been hardest to use. Overall, seventy-one
percent of the programmers chose the PDL format as the easiest to
use; 18% chose the Petri net, and 14% chose the resource diagram.

The programmers were alsc asked if they had previously used any of
the documentation formats. Eighty-three percent of the programmers
making a control-flow modification indicated that they had j

[N ORI B R T T R U W U)

e g

previously used a PDL; only 53% of the programmers making a
data-structure modification had previously used a PDL. Three of the

programmers indicated that they had previously used a form of
resource diagram; four of the programmers had previously used a form
of Petri net. Table 5 shows the mean rating of how much they relied
on documentation format €£or each type of modification. For both
types of modifications, the programmers stated they relied most
heavily on the PDLs, and less so on the resource diagrams and Petri
nets.

DOCUMENTATION FORMAT
MODIFICATION
RESOURCE POL PETRI
CONTROL FLOW 5 23 6
DATA STRUCTURE 6 27 3

Table 3. Number of Times Documentation Chosen as Easiest to Use

DOCUMENTATION FORMAT
MODIFICATION
RESOURCE POL PETRI
CONTROL FLOW L 5 19
DATA STRUCTURE 1 5 20

Table 4. Number of Times Documentation Chosen as Hardest to Use

DOCUMENTATION FORMAT
MODIFICATION
RESOURCE POL PETRI
CONTROL FLOW 24 3.6 2.8
DATA STRUCTURE 2.0 3.3 1.9

Table 5. Mean Ratings of Reliance Upon Each Documentation

Experiential Factors

The participants were asked the number of years they had been
programming and the number of programming languages they knew. No
correlation was found between years of programming experience and
modification time. A low negative correlation (r = -0.23, p <.05)
was found between number of programming languages known and
modification time.

e e e

[

DISCUSSION

Substantial differences in completion time were observed among
the three types of documentation formats. For both kinds of
modification (control flow or data structure), the resource diagrams
led to the best performance while Petri nets led to the poorest
performance. This suggested that, unlike sequential processes where
control-flow information was required, concurrent processing
requires information about interprocess communications. Because
data structures are often wused to pass information between
processes, the resource diagrams, which highlight information about
communications between processes, also highlight data structures.
Both kinds of modifications required locating the particular data
structures that needed to be changed; this probably accounts for the
fact that it was easier to locate and make modifications when
resource diagrams were used. Two things should be noted, though.
First, the data suggest that the differences among documentation
formats are not very pronounced for all cases; the text search
program provided the most striking differences. Second, the
modifications used in this experiment were simple and did not
require many control-flow changes; this will not always be the case
with modifications. This suggests that, at 1least for simple
programs and simple modifications, it 1is not <c¢rucial whether
interprocess communications or control-£flow information is
highlighted in the documentation format. For more complex problems,
the longer times required by the Petri nets and PDLs suggest that
when modifications are made, detailed control-flow information is
not necessary, and, in fact, may interfere with making the
modification.

Differences were also observed among the three problem types
used in this experiment. The message distribution problem was
associated with the shortest times, the text search problem resulted
in the 1longest times, and the air traffic display problem was
in-between. This result parallels our past experiences in finding
differences across problems. While the programs were roughly
equated in terms of a common measure of complexity, they did have

-14-

e T T Ve e ki = b g A g AaTCE W RS s AL e it) I NN P S N1 L e . b i e ™ -~

B el

s e P S

e e S <A AR TS

slightly different complexity ratings, as measured by the McCabe
metric. ~The amount of time required to make modifications was found
to be 1longer for the problems with a higher complexity metric,
suggesting that control- flow complexity may indeed provide a good
measure of psychological complexity.

Diversity of experience, in terms of the number of languages
used, was a better predictor of performance than years of
experience., This result replicates results from our earlier
research (Sheppard, Kruesi, & Bailey, in press; Sheppard, Kruesi, &
Curtis, 1981; Sheppard, Milliman, & Curtis, 1979) and highlights the
importance of ensuring that programmers have an opportunity to gain

broad applications experience as part of their professional
development.

The participants' choices for the easiest to use documentation
format and their previous familiarity with one of the documentation
formats lead to an interesting observation. Although, overall, 68%
of the programmers had used PDLs before this experiment and 71% of
them chose it as the easiest to use, the time required to make the
modifications with the PDLs was in between the other documentation
formats, for the two types of task modification.

Taken as a whole, the data suggest that the most appropriate
type of documentation for concurrent processing (resource diagram)
is different than the most appropriate type of documentation for
strictly sequential processing (PDL). For modifications t»>
concurrent processing programs, at least for simple programs and
simple modifications, it is not <crucial whether interprocess
communications or control-flow information is highlighted in the

documentation format. For more complex problems, it would appear
that detailed control-flow information is not necessary, and, in
fact, may interfere with making the modification. These data are
especially interesting at this time, when PDLs are becoming a de
facto standard in the software industry. Further, they suggest that
industry may be preparing to adopt, as a standard, a documentation
format which will not necessarily provide them with the greatest
possible benefit.

-15-

DR RURUR e S R S il

The authors would like to thank Sue Hannan of GE in Lanham, Ron
Boehmke of GE in Valley Forge, Bill Carrens and Jackie Pickard of GE
in Springfield, and Roger Collins, John Ivers, Dave Morris, and Lou
Oliver of GE in Arlington for providing participants and facilities;

' ACKNOWLEDGEMENTS

- Dr. John O'Hare for advice; Don Wittig for graphic support in
; preparing the documentation formats, and Tom McDonald for preparing

the supplemental materials and statistical analyses.

REFERENCES

Boehm-Davis, D. A., Sheppard, S. B., & Bailey, J. W. An empirical
evaluation of language-tailored PDLs. In Proceedings of the
26th Annual Meeting of the Human Factors Society. Santa Monica,
CA: The Human Factors Society, 1982, 984-988.

Davies, O. L. The design and analysis of industrial experiments.
London: Oliver & Boyd, 1956.

Jones, C. A survey of programming design and specification tech-
niques. In Proceedings_of the IEEE _Conference on Specifica-
tions of Reliable Software. New York: IEEE, 1979.

Lientz, B. P. & Swanson, E. G. . The use of productivity aids in
system development and maintenance (Technical Report 79-1). Los
Angeles, CA: UCLA, Graduate School of Management, 1979.

McCabe,. T. J. A complexity measure. IEEE Transactions _on_Software
Engineering, 1976, 2, 308-320.

Peterson, J. L. Petri net theory and the modeling of systems. Engle-
wood Cliffs, NJ: Prentice-Hall, 1981.

Shaw, A.C. The logical design of operating systems. Englewood Cliffs,
NJ: Prentice-Hall, 1974.

Sheppard, S. B., Kruesi, E., & Bailey, J. W. An empirical evalua-
tion of software documentation formats. In J. Thomas, &
M. Schneider (Eds.), Human__Factors in _Computer Systems.

Norwood, NJ: Ablex Publishing Corp., in press.

Sheppard, S. B., Kruesi, E., & Curtis, B. The effects of symbology
and spatial arrangement on the comprehension of software
specifications. In Proceedings of the Fifth International
Conference on Software Engineering, San Diego, CA: IEEE, 1981.

of on-line program construction (Tech. Rep. TR-79-388100-6).
Arlington, VA: General Electric Co., 1979.

[Sheppard, S. B., Milliman, P., & Curtis, B. Experimental evaluation
T
!
L)

Winer, B. J. Statistical principles in _experimental design. New
York: McGraw-Hill, 1971.

TR YA Vo .

o ey
'
-
™
)

APPENDIX - DOCUMENTATION FORMATS

RESOURCE DIAGRAMS

PROGRAM DESIGN LANGUAGES (PDLs)
PETRI NETS

SOy W T W

-20-

RESOURCE DIAGRAMS

i

. t =t | Salg

D D NE ONE W ey e P

t 33330W

Sngrosony % 198304 g IS ROLINGN
Agtn P poyesned jg) Byt VOIS b G0N SiwNm g
II cuprmuspns? { SIS W0 Suee b peeresd

ll) ;01 00 S B VSN W Sey P
19 MR TS JUst BN B MWD 150 N 191 W i W

0 wyrem gy ¢ e Smmagi iys WOdS: PE 13030 M)

- R A 5 o 125t ARt i o i oA

TYNINUIL S W0LVEI0

oy oMY IUuswe) Sgy my Y 08 28NSt 1582046 WL
U enmim $4) 01 SHPIE N oug Sy DM B JIN) Soum R
@ POREEY B WY SN POueses S8 WENRY 2t 10s ol

8 2 198 P 11020 S I Oryre P 9 P 9 NS

490301 o woq m B e t I DO P en { PRI
®1 Gnys waee Sog Spundeenss Sa i POV 9 wur ¥
YR WP stg) B0 § W5 98 & Say v eAme) ¢ B

0 S 18 GG PR SSPR0ee V143008 Wgg BURE POITROR: 0y
e Saopn S} SIS0 R4 U S SN A 119300 BBt

VoiINON

B GNP G Gay ens OuN G ey

f A

W

| !!E
!:i’l%‘i‘%llil

D

| ilz'!:l!l'

LI

| messace mstmauion(c) |

~—
-

| messase msTmsuTion(|

23~

i
i
l L
!'!ll! g 1,
R i L
I by it
: }iii! s;r;'"
: (Wit
‘ 2
. ' H
[Y
' l‘l‘ ll
- Fu:{ﬂ }3%; il
{ iy p: Rt b
| | h” mk’m 3%334%.-13
| A 4
I
| i ;‘%;%};',
1 , : it
! it @ ‘!ﬂ! :ﬂ!
' i nJ h"
|l
|
1

S | o . | C

§e o nd TN Pova— n— o L _— -y [-l

o) OouE Gu S tuw P e —— e~

|

L]

? §!§§“:!=

l! ;!l
il

i
} .!a

‘!iﬁl"xr'l__

| lla“lﬁ"

[messace wsTusuriono) |

PR RR

AN o o e oS AN B A Bl WO 1 44 102 —

RADAR__MONITOR

et ey e omw wee wes mee o om |

g — L [] - =" G A oo " —- P .

it

SCREEN__UPDATE

I it
i
A

-25-

?m'
FRI L
SEEeT
OPERATOR'S TERMMNAL

AIR TRAFFIC DISPLAY (C)

A

A

o

: Iy
‘izlrit -y TH
HEHLL Y R T
il —{ it ’iii‘iiiﬁigggiﬁ
i |l
it ;ﬁii:%iaséiis;g

98

| ~m TRaFriC DisLAY) |

!

RADAR__MONITOR

CONTROL

OPERATOR'S TERMINAL

SCREEN_ UPDATE

AIR TRAFFIC DISPLAY (D)

i
iﬂ.ﬁ

‘ﬂ !lalﬂl l ! il I: i u!n n,[

i i
! HE !,‘l !‘l I L :‘|g|i {
i i'll!dﬁ ; <——“— -:'igﬂlﬂghui f’iguhl !g

zhlnlhiﬁ"l "!l'i“lmﬂi TRl lﬂgmi'

i

-28~

e

b

E

15;u=-1

g
i
d"l
:'!liil

-t st

i
i

l :‘2‘ 11

ulhl Ilh

i\

la! HR
li i ﬁin'l

i

'th"-!
| 1“1

‘hhli-n. il

!
I
N
1
|
!
|
|
|
B
1
B
1
|
B
!
I
l
|

L‘?‘ s 2 ‘l
..! e 2!3'! f'-!i!
il 13

a l! k !!ig é'gigél
i i g

()

A

1.4
il

3@3

l-:l..'
; ‘;iiii!igg
kit
i! g
i @o]
I

i ';g : i : i.l,
il digle Iyl i
o

2§3Es1g

OO0

A b
| i
Hilifhians it

-30-

l

PROGRAM DESIGN LANGUAGES (PDLs)
31

Gk N0 DR CuP PG e ey b=t rmd pet et G) P P pu) G ol M

E — T SRR T ITR———

i
|
I
I
]
]
]

L

]

¥ -

g b o) pumd)

e

aragram EXAMPLE
jeclare
t0_1. SEND_1. 10 2. SEND S TCRUNICATION FLad

cass PROCESS_:

ssclere
INLINE STRING(L &G
t INTEQEN

segan

e ‘arever
reas (IN_LINE) Ffrom terminai
16 (Cond o¢ di1le read);: then
esit do
ong 3¢
da far [= 1 tva (locatian 3l jast ngr=-ulansy :raraccer in % __INE)

! My
send (IN_LINE(L). g mON[TCR

e de M
SET_FLO(I10 1
tuhen PROCESS | terminates. the 4r3 3¢ ¢1le =P:s jenerates wil. "“gtiey
MONITOR thac PROCKSS_L 19 termiracing)
one PROCESS 1

tash PROCESS 2

declare
IN_LINE STRINGUL @0!
4 INTEOER

segan

88 farever
read (IN_LINE) $rom terminal
14 ({oma of #1le reasg)’ then
erit ¢o
one ¢
da ar [» | to (locacion 37 Lavt ngn=ulams :raracter in (N__INO)

send C(IN_LINE(T 1:. w3 ™ON{TCR
ond de
ong de
SEY_FLOLIO D)
(unen PROCESS 2 torminates. the #nd 34 ¢1le Tthis generates wil!l motidy
MONITOR that PROCESS 2 13 termirating)
ond PROCESS 2
task MONITOR
declere
ONE_10. TWO_(D INTEQER
[Q_t _READY. [0 _2 _READY FLAG_ZTATLS
PROC_L_ALIVE. PROC _2_MIVE LOGICAL o TRUE
IN_CHAR ClARACTER
vegin
proampt ({gperater to cantinuel)’ o terminal
CREATE (PROCESS L/
CREATE(PROCESS 2
de whi1le (PROC_)_ALIVE or PRQC 2 alliVE:
WALY _FOR_OR_OF FLACS
READ_FLG 10 1. 10_1 _READY
14 (10_1_MEADY) then
CLEAR FLQ(10 1)
SEY_FLS(SEND 1)
accepe (IN_CHAR) From PROCEES
14 ({not eatd) then
write (IN_CHAR: to termina.
else
PROC 1 _AMLIVE = false
CLEAR_FLa(SEND 1
ong ¢
ene ¥
READ_FLO110_2. 10_2_READY
14 (10_2_AEADY) then

& =
SET M o(uEND D)
ue;:: (!n_cu'ali trem PROCERS 2
1# ((nak eat}) then
weite (IN_CHAR) ta terminal
else
PROC 2 ALIVE = Saiee
CLEAR _FLO(SEND)
wmé 1f
oand ¢
me de
ond MONITOR

"
ave MONITOR

-32-

sragram MESSAQE DISTRIQUTION
seclare
ctype SIONAL 19 (NEW_MEISAGE. RCAD_MESRAGE)
NEW _ESSAGE_FLAG L. NEW_MET8aiC LA, _a, STOP SV JOMMUNICATION ©emg

tast NESSAGE PRODUCER
38cleve
&x8C_1D INTEGER
nE80 _CODE FTRING(L W
CEEACE STRINGcL T
Bagan
CASATE (MESSACL EXEC. EXBC_10)
40 while ({not stopped ¥y aperatar:.
prompt ({eperator dor M33L _COIDE) ' va terming.
prompt (Ceperator dor MES3AGE): 70 terminal
sene (NEW _mESSACE) ta ™EIBACE_rEC
sene (MSSQ_CODE. MESSAGE: to MESSAGE_EXEC
ond qo
eng FESSAQE _PRODUCER

tast MEESAME_E£xEC
dacleve
REQUEST SIoNAL
CURRENT FLAQ COMMUNICATION "LAG = NEW_MESSAGE _FLAG 1
m880 _CODE 3TRING(L.)
MESBACE STRING(I T
Yegsn
do while ({value a¢ MESC _CODE 18 nov special val.e meaning termingce).
accopt (REGUEST) #4rom MESSAGE PRITUCER or ME3SAGE_READER
10 (REQUEST = NEW _MESSAGE) shen

accept (MESC_CODE. MESSAGE: #=en “ESSAGE_PROGULCEP

CLEAR _FILG (CURRENT _FLAG

CURRENT FLAG = (altarnstes hetusen NEW_MESSAGT_"LAG_1 ane
NEW_MESBAGE _FLAC _2)

1# ({value of MS8C _COCE s tpe:ial value mearirg terminate). tnen
SET_FLG(STOP_SvS) -
SET_RLO((whichover o5 the tw: NEW_ESSAGE <.ags 1s not ecual o

CURRENT _FLAG)

one 14

SET_FLQ(CURRENT _FLAG)

. 1f (REQUEST » READ_MEISAGCE) then
n: (M880_CODE. MESSAGE) to “ESEAGE_REKADER
[LTIY
ond de

end MESSACK _ExEC
task MESSAQE _READER
declave
CURRENT FLAQ COMMUNICATION MLAG = NEW MESSAGE SLAG L
TERRINATED FLAG_STATUS
READER _COOR, ™38C_CODE STRINGtt. 9
MESSAGE STRING(L. 72)
began
de forever
prompt ({eperstar for his RCACEP _CODEY: to tersirsl
16 ((READER _CODE not equal %0 special termingctian valuel then
en it ¢o
else
write{{errar maesage ta speratir)) to terminai
one 1f
ond do
do while (net TERNINATRD)
WALT _FLO(CURRENT FLAG)
READ_FLC(STOP _SYG, TEAMINATED)
¢ (nat TERMINATED) then
send (READ_MESSAOE) to MESSAGE _ExEC
accent (MSGS0 _CODE. MERBACE) Ffrom MESSAGE _EXEC
1f (MBS0 _CODE w REACER _COOK) tnen
write (MESSAGE) to terminal
end ¢
CURRENT FLAG = (alternates between NEW_MESSAGE_MiAd_L ana
MESSAGE 2}
and 14
ond do
ond MESSAGE_READEN

tegin

stare MESSAOE PRODUCER

<operating syrtem will allow pecple to get i1nta *he 21striButidr systes ¢y
running the MEBSAQE _READCR task)

ond MESBAGE _DISTRISUTION

MESSAGE DISTRIBUTION (C)

-33-

aragram MESSAGE DISTRIBUTICNM
Jeclare
type SICNAL 13 (NEW_MESSAGE. READ_MECSAGE. NEw_ "EALEF

task MESRAGE PAQDUCER

declare
SxEC_(0 INTEGER .
mE8C_CODE STRING(: %)
MESSAGE STRING(T T

segin
CREATE (MESSACT _EXEC. RXRC_ID)
40 while ((nat stapped by aperatar)
promps ((sperator sor MS8¢ _COOE) <co terminai
promet ((aperator dor “ESIAGE) "c terminal
tona (NEW_MESSAGE) to MESEAGE _EXRC |
tene (MBSO _CODE. MESSAGE! to mESSAGE_w»r&C
end ao
end MEISACE _PRODUCER |

caskt MESSAGE EXEC

- declare
i AEQUEST SIGNAL ,
: 10 INTRGER
: MSgC _CODE STRING(1 S»
: MESSAGE STRING(t 72}
Segin

46 whtie ((nat all MESSAGE_NEADZRY rave Desn termirared))
accept (REAUEST) from MESSACE PFILUCEP or CSSACE READER
1# (REQUEST = NEW_MESSAGE) *hen
sccopt (MGSG_CODE. MESSAGE! from "E3SAGE PRODWCER .
ID = (new Mmessage 1dentisier " moer)
{100 14 MESSAGE _PRIDUCEN wantt i1ystem cermirived oy Checsing P88¢_ICIE
valve)
else 1 (REQUEST = READ MESSAGE ~hen
14 ({net terminating SSMC _"EA0CR erccesses; zren
send (10. MBSO _CODE. MESSAGE ' rc MESSAGE "EACEr

i else

H send (ID. (spacral termiraticr MISG_COOE!. MESSAGC cto MESSAGT_"EACIR
H ong 1f

| else 1# (REGUEST = NEW_READER) tnen

<remoader :Hat snothrer MEZSAGE_"EADER 13 acti.e:
: ond 14
¢ ! en¢ do
: ond MESEAGE _EXEC

tast MESSACE _REAOCR
declare
1D INTEGER)
ACADER _CODE. mSSG_CODE STRING 1 ¢
"ESSAGE STRINGUL T2»
seqin
send (NEW_READER) to MESSAGC _EXEC
promgt ((aperator for nis RCADER_CICE} to terminai
d0 while ({terminatian Ras nat beer ~equestesd Dy MESSAGE_ExCCY
seng (READ_rMESSAQE) to MEZSACE _E:EC
accept (1D, ME30 _CODE. MESSAGE) ¢rae MESSAGE E1EC
(see 1 termination requestad By checting MSSG_CQODE velue)
1? ({new meesage and M3SC_10DC = “EADER_CQDEY: ~nen
write (MESSAQE) to terminal
eng :#
ond do
ond MESSAGE_READER

JET

segin
:nrt MESSAQE _PRODUCER
operating system will allow o8le to get 1nta t 3
running the MESSAGE_MEAORR tesk) } T IraTTABuTien wvaten sy
ond MESSAGE _SI1STRISUTION

T

| message oisTRIBUTION (1) |

srograem MESSAGE _TISTRIOUTION
declare
type SICGNAL 18 NEW_“ESSACE. "W _SCACEM

cass MESSAQE _PACDUCER
declare
"ESSAGE STAIMNGI1 TR
&x&C_10 INTCGER
»g80 _C00E ITRING.1 9.

segin
SREATI (nESSACs _ExEC. ErEC _C
30 while ({nat stospeq By peratar’
sramet ((eperatar Jar =356 _-CDE: o termiras.
sramet (<eserater Jar NESZACE) to terminal
send NEW _EESACE) to "EIZACE _Brac
e« (B8O _CODE. mESEAGE: ta ™ESSACE _S)&C

one de
ong "ESSAGE PRODUCER °

tase MESSAGE EXEC
10clare
Om_FLGS(10) IIMMUNICATION _~LAG
READEN _CODES:30) STRING 1 %
~ESSAGE SIRING 1L 72
QEQUEST SIGNaL
NUN_READERS INTEGER
segin
30 firever
.eczeot (REGEST) from =ESSACE PEIIUCRF or ISEAGE_SEALER
14 REQUEST = NEW_MESSAGE) then
sccept (MSSC_CODK. MESSACE . ¢ror ~€35AGE _OPQL.(EF
1¢ ((MGEC _CODE /@ special termiration .sive) hen
da far [= | to ‘Wi _RCACERS
1f (nGS6 _CO0R » IEACER COCEC [tren
SET _FLO(COM FL3S L -
sene (MES3_CODE. MESEAGE: to ~ESSAGE _REACER
ong 1 f
' ond de
else
de far [= | o UM _RCADERS
SET_FLG(COM _FLGS T -
¢ i<epecial terminatian “SSG_I0O0E>. "E€3SACK to ~ESSAGE_FEapEr

exst do
end 14
eise 14 (REQUEST = NEw_SEAQER: t-en
NUR_READERS = NUM_RCADENS -1
sccopt (READER _CODEZ (vum_"EADER. . #rom “CSEAGE CACER
10nq ((nest unusee element s¢ (O™ _FL3EY to “E35AGE_REACEF
one 10
one e
one MESSAGE _EXEC

tass MESSAGE _REAOCR
declare
Con_FLo COMMUNICATION FLAG
AEADER _CODE. "ESSAGE _CODE STRING: . 3
qESAGE STRING(L *Q)
2egan
promst ‘(eperator Jer nis TCACKR CILE) - to sernira.
seng NEWw _REAQER' to MESSAGC _ENEC
sene (READER _CODE) to “ESSACE_EXEC
sccept COM_FLI) sram ™ESSAGE _TX&C
40 ferever
WALT_ON_FLG(COM_FLG)
accent (MESC_CODE. mESSacE: ‘rom ~CSBACE_@r&C
¢ MBS0 _CODE ‘= (ssecial terminactian vaiue): “nen
write MEESAQE) to terminal
else
o131t da
e 1!
ong de
one MESSAGE _READER

segsn
tert MEBBAGE _PRODUCER .
{oporating system will ellow peesle ta got intc Re 1:3CPIBUtION system By
running the MESSAGK AEADER taer)

me MESSAQE _DISTRIBUTY

MESSAGE DISTRIBUTION (D)

-35-

program AIR_TRAFFIC_DISPLAY

declare
type OBJUECT _DESCRIPTOR_RECORD is record
ID : INTRGER

ALTITUDE : INTEGER
ROW : INTEGER
COLUMN : INTEGER
AM_TITUDE_CHANGE_INDICATOR INTEGCR
HAZARD_INDICATOR : INTEGER
OLD_ALT : INTEGER
end record
SYNC_SIGNAL _TO_RADAR_MONITOR : COMMUNICATION_FLAG

task CONTROL
{starts up the other two praocesses :n the system and allows ths cperataor to
terminate the system)
en: CONTROL

task RADAR_MONITOR
{pericdically sends a set o CBUECT_DESCRIFTORN_REC FDs to SCRIEN_UFDATE sa
that it can update the air traffi:c display and also notifies the SCRIEN_
UPDATE procass at the time 1t shoula terminate <rat i1t should terminate)
end RADAR_MONITOR

task SCREEN_UPDATE
aeclare
OBJECTS(20) . UBJECT_LESCRIPTOR_RECCRD
NUM_OBJUECTS INTEGER
begin
do forever
SET_FLG(SYNC_SIGNAL_TO_RACAN _MONITOR)
accept (NUM_UOBUECTS) from RACAR_*CNITOR
i# ({end of file found instead of NUM_OBUECTSY: then
exit do
eng i#f
do for I = 1 to NUM_OBUECTS
accept (OBJECTS(I)) #rom NADAR_MONITOR
1f ({object disappeared #rom screen)) then
{clear image of ob,ject ‘rom screen}
end it
eno do
do for I = 1 to NUM_OBUECTS
it ({new object on screen)) then
{initialize record OBJECTS(I)}
else
{save indicator of altitude change 04 ob, ect in record OBJECTS(I)}
end if
end do
{check whether any objects are toc close to each other. saving an indicator
of the safety of each object in the OBJECTS records)
{erase the screen on the display CRT)>
{for each object described dy OBJCCTS, update the obect display on the
display CRT)>
end do
end SCREEN_UPDATE

begin
start CONTROL
end

AIR TRAFFIC DISPLAY (C)

pragram AIR_TRASFIC_DISPLAY
jeclare
type OBJECT_DISCRIPTOR_FECORC 19 razcra
ID INTEGEPR
ALTITUDE : INTEGER
ROW = INTEGER
COLUMN . INTEGER
ALTITUDE _CHANGE _INDICATCR INTEZCR
HAZARD _INDICATOR - INTEGER
end record
SYNC_SIGNAL_TO_SACAR_MONITOR COM NICATION

_TLAG
cask CONTROL
{starts up the other twe prc:essads .n the 3ystem ar. ailows 7=A+ :cerakar =2
terminate the system)
engd CONTROL

task RADAR_MONITOR
{periodically sends a set af COBUEC" _DESCRIFTIN _FS(CIFCs to SCREEN_LFLRTE 3¢
that it can update the air srafei1: Jisplay - 3isc norifies tha SCRIEN_
UPDATE procass at the appropriace -ime that 1%t skaLid termirnater
end RADAR_MONITOR

task SCREEN_UPDATE
declare
OLD_NBUECT, NEW_OBJECT(QC: ZCUECT _CESCRIPTCR _RECCRL
NUM_QBUECTS INTEGER
begin
{erase the screen on the cispiay C(FT?
do farever
SET_FLG(SYNC_SIGNAL _TC_FACAT _MONITOR:
accept (NUM_CBUECTS) rfrom RACAR_MCNITCR
it ((end of file found i1nstead 2+¥ NUM_OBLUECTS). <ren
exit do
end if
do for [= | to NUM_OBUECTS
accept (OLD_OBJECT, NEW_CB.ECT 1. from RALAS_MCHITCOR,
if ({new ob ject on screen)}’ ther
{initialite record NEW_CBJECT 1)}
else if ({object disappeared frcm screen); ther
{clear image af ob,ect from screen)
else
{save indicator of altitud? change of ob;ecT ir Tecord NEW_CBJECT I
end 1f
end do

{check whether any ob,ects are tac close tu 2a:1 cthar, saving an 1n:icater

of the sarety of each abject :n the NEW_OBUECT3 recorass)

{for each ob ect by descridea NCiw_UBUECTs, update che obect ¢isplay or the

display CRT)
end do
end SCREEN_UPDATE

':""

begin
start CONTROL
end
AIR TRAFFIC DISPLAY (1)
~37~
-y . |
. _

| I

program AIR_TRAFFIC_DISPLAY

declare
type OBJECT_DESCRIPTOR_NRECORD 1s racord
ID : INTEGER

ALTITUDE : INTEGER
ROW : [INTEGER
COLUMN . INTEGER
ALTITUDE CHANGE_INDICATCR INTEGCR
HMAZARD_INDICATOR : INTEGER
end record
SYNC_SIGNAL_TO_RaADAR_MONITQR . COMMUNICATION_ TLAG

cask CONTROL
<gtarts yp the other twe proceisas :in the systam arc allows the sgarater ¢o
termingte the system.)
end CONTROL

task RADAR_MONITOR
{periodically sends a set ¢ OB ECT_DESCRIPTOR_FECZrLs to SCREEN_LPLATE 30
that it can update the air craffic display ane aisc notifies nhe SCREEN_
UPDATE procass at the time it should terminate <hat it should terminate ?
ena RADAR_MONITOR

cask SCREEN_UPDATC
declare
CURRENT _OBJECTS(20), NEXT_OBJUECTZ(2¢: . OBJECT_DESCRIFTOR_RECORD
NUM_IN_NEXT - INTEGER :
begin
go forever .
SET_FLG(SYNC _SIGNAL_TO_RAGAR_MOMITOR)
accept (NUM_IN_NEXT) from RADAR _MCNITOR
it ({end of# #file found instead of NUM_IN_NEXT}. then
exit do
end it
da for I = 1 to NUM_IN_NEXT
Accept (NEXT_OBJECTStI)) from RADAR_MONITQOR
ena da
{faor each object described by NCXT_OBJECTS., see 1f the altitude has
changed compared to the same ob ect described in CURRENT_OBJUCCTS sna
save indicator of altitude change of ab ject in record NEXT_OBUCCT(IN?

{check whether any objects are toc close to eack qther, saving an ingicator

o+ the safety of each object in the NEXT_OBJECTs records)
{erase the screen on the display CRT}
{for each object described NEXT_QJCJECTS, update the object display an the
display CRT?>
CURRENT_OBJECTS = NEXT_QBJECTS
end do
end SCREEN_UPDATE

begin
start CONTROL
end

L AIR TRAFFIC DISPLAY (D)

s A e

j:
i
i
#

o

;‘

|

aragram TEAT _SEARCH 19

qect

type BIGNAL (s PROCKED- FINISHED. CTARCKH_OONE!
tash REQUEST _rHANDLER
1eclare

[. NUM_REVS, SEAMCH_ID INTEGCR
nEYS(Y) STRING: L 90!
RegLin
write ((sescription of proJramd: ta termingl
srampe rator ta continual' tc terminel
de Sqrever
CREATE (SEARCH. SEARCH 1D
accept (PROCEED) ¢roe SEARCH
prompt (C(eperatar o ZANTINUE AFIJrem) ;) TOo Teriinmgl
1# 1 {ond of¢ #1le received)’ then
et ¢
oend 1f
ene 3¢
<dar svery SEMICM creates. accept “INISWED) srom ITARCH)
one REQUEST _HANDLER

tass SEARCH
deciore
NUM_nEYS. KEY_LENGTH(9). | PRINT _ID. CATA_BASE _CHIIIE INTEGER
nwEv$: 9 STRING (1 @O
FILE_ NAME STRING(L 40
bseqin
NUM_WEYS = O
to faorever
prompe ((eperateor far wEYI. MUN_REYSel)) to rmerming;
1f (<en¢ o¢ d1le received) then
es1t de
ong 14
NUM_KEYSanUN_KEYS+1

raser te entar his DATA_DASE_CHMOLICE) s terminai
send (PROCEED) to AEOUEST ~anCLER
(waitt Par gignael Prem another STARCK s1gngling thet it 18 gone. “Mig
fraeing & Line fer this ZEAMCH t0 .38 1N COMMUNICATING with (tY
PRINT FILE sreacesal
CREATE (PAINT FILE. PRINT 10
send (PROCEED) te PRINT FILE
r { & 1. NUM_REYS
(MEVE(()) va PRINT FILEL
SENOTHI L) @ LABT CHAR L OCimEvg 1.
.
e “s@TOP") ta PRINT _FILC
on specifies 4ata base Jirectar, ‘ile)
rever
reat (FILE _NAPNE) frem Jirectary
1 (Cond of S1le recoived) then
ene
ond 34
10 (ol MREYS_IN_FILE(FILE _NANE. Ny _SEVE, AEVS. »BY __BHGTHI then
song (FILE _NanE) to PRINTY _FILE
e
e ee
seng (“SETOP") te PRINT_FILL
C10 necessary. nevify neat ZEACH That tais ame s termineting)
seng (FINISMED) te REQUERT _ :ANDLER
ong SEARCH

tash PRINT _FILE

daclare
nEYs STRING(L 00) ® nuil
FILE_vrE STRING(1L 40} ® null

(PROCERD) /rem SEARCH
(create autput File "TEXT WATCH DAl
0o while (KEY(Z 9) /= .Evop
actops (REY) ¢rem SEANC
write (REY) te 'Yl"_r\ltcu DAT™
ong do
1] ohlo (rtu,,unu $) ‘e "I
(FILE _NARE) from SEAMRCM
wuo (PILE_NAE) te "TEXT_RATCH [AT

ond nmn:tu

one muunu

TEXT SEARCH (C)

-39~

e

Ly

e Y e e T 2 4

aragrem TEXT _SEARCH
declare
type SIGMNAL 19 (ENGUEUR:

saeh REQUEST _MANDLER
1eslare
LoNUR_WEYS. SEARCH_ID. CATA _BASE CHQIIE INTEGER
~EY$< 9 STRING(T &8O
segan
write t(gescriptiaon 0F proygram’ t: terminal
promst ((gperator to cantinuel)' t¢ termingi
3¢ forever
NUM_MEYS = O
de forever
oromgt (C(osarator #0r WEYE.NUM rEYSel) ro terrina:
1 (Cand a¢ S1le recoi.eg) “her
enig de
olse
NUR_KEYSonun_nEY§e L
e ¢
ene de
sromet ({aperatar ta encer Ais [a~aA_RASC _<mOls re terminal
CREATE (SEARCH. SEARCH_ O
tone (DATA_BASE_CHOICK. Pum_s&YS. ra SEARCH
Coona (MEYS(1) AEYS UM _wEvEi ' 2c SEMRCH)
sroest ({(eperater to canrinue Jr.gram}: tg ternira,
14 {ong e# #$1le receirea)’ chen
o518 de
omg 14 N
one 3o
ong MEQUEST _HANDLER

tass QUEVE _MANAGER
seclare
AEOUEST SIGnaL
PRINT_1D. s _uE¥S. v FILES. [nEr __INGTH INTECEF
wEY. FILE NME STRING L §0:
tegin
ae forever
accost (REQUEST) #rom SEAACKH
1¢ (REGUEST = ENQUEVE) tnenr
CREATE(PRINT _FILE. PRINT _ L.
caccapt NUM_WREYS. and the set 3¢ nEYs Sram 4 SEAACH process ana
SONE thom tO the PRINT FILE grocess that wed _.i” crestes)
<accept NUR FILES. and the set c¢ FILE NAMEs fror the S2ARCh crocess
and sond them to the PRINT _FL.C sracesy)
[LTENY
one de
g WEVE_manactr
task SEMCH
declare
NUM_nEYS, WEY _LENGTH(S), [. NUm_FILES. CATA SASE _CMOICE INTEGER
REYS (2. FILE_NAME (100! STRING . SO
segan
R FILES = O
accopt (DATA_BASE CHOLCE. tiom_nEYS) rom REQUES® _~AnCLER
(epem peciPied deate base 1irectur, Jile)
caccopt (MEYS(1) AEYS(NUM nEYS) ' <rom MEGUEST =anlLER)Y
40 btarever
read (FILE NAME(NUM FILES L' srim gLrectary
tf (Cone o¢ Jile receiveq): then
esit ¢
ong 14
14 AL _MEYS _IN_FILE FILE NaME, N _wEYS. aEYS. sy .ength): cner
NUR_FILESenun FILES L
ome f
ond ae
sond (ENQUEUE) te QUEUE_MANGGCR
€ (NUN_REVS) ta QUEVE_MANAGCER
¢ (XEYS(13' REYS(NUR AEVE)) ea WEULE _“ANACES
NUN_FILES) to JUEUR F'mﬁ
Coone FILE_NAMEB(1) FILE_NAMES (NUP FILES) to i EuE_namacse)

ong SEARCH

tasn PRINT FILE

declare
MU aEYS, MU _FILES, 1. KEY _LENGTWO (S INTEGER
wEYE 91, FILE_NanE 100) STRINOUL ao:

sutout Pile “TEXT_MATCH DAT")
(accopt MM _KEYS. ane the set o¢ nEvS drom GUELE _“aracER)
Caccopt MM n.n and the set af FILE NAMES frea a\.n.s _MANAGER
(write wEYBi1) KEVE(NUM WEYE) te "TEAT _MaTCH DAT

(wrste wu.:_m-tm FILE _varE v _FILED) e - SATCH DAT)
ong PRINT_FILE

» L)
aret REAUEST
one TEXT_SEARCH

TEXT SEARCH (1)

-40-

I EE——

N e LR

e,

Seas g i

ap Mg g

GNP Gu) NP Cud Gum GNe St o N oes oW ems SUE S5 VN TH SN BN S

PP

. s W v A L nia

Rt e s e o i 4 i = 2 -—

arzgram TEAT _SEARCH
teilare
cype SIGNAL 19 3TART _ITAF I EEARC- DONE®

tass REWEST _NaAnT ER
jeliare
2. um_WEYS. DATA _DASE_CROICE INTE P
“Ev8. %) STAING.L @0
Jegin
JfIte . (Q2Q@ECr10TION 3¢ proiTam) T TereLrs.
prompt ¢ eoratar to camntihuel) ' “‘c ~eraind.
a9 farever
NUR_aEYS = O
a0 ‘arever
aromet iieperater sor ,EVSIMM_vEYSel) o termirai
14 ({en€ o¢ ¢1le received;: then
estt ¢n
else
M _MEvSenum_ngY§ 1
eang 1 #
ene
praompti{operator to enter ~i13 ThT 4 LASE _mJICE? =3 zerminai
1eng START SEARCH) o JUELE_man,
send DATA_TASE_CHOLCE. mim »Ev3' e WELE MNM-CF
Csone (MEYE(1) MEVE WM nEVEi . -3 GUELE_®
prompt ({egeretor tg continue ar:;ram}: tg nv “irai
14 {end aé 41le received] *hen
su1t 40
ona 14

ene 39
ena AENEST _HANCLER
tass GUEUE _MANAGES

declere
REQUEST SIcNAL
SEARCH _10. PRINT 1D, INDEX. MUM _«&YS. i . WM _FILLS. TNTEGER
OATA _BASE CWOICE INTEGER
afvgc 10, 5. FILE_NamE STRING. . B¢
EYPEL
sa farever
accept (REGUEST) from REQUETT =anCLE®? or SEARC-
10 AZQUEST v START JCARCIH! then
REATL (SEAMRC M. SEAMRCH 1T
INGERT _SEARCH KEISWC!‘ L. INOK -
‘accept OATA lalt shﬂlaﬂ WM _sZVS. and the ie- i KEYE sraom
NEAUEST_~anOLER sne verda 3EAFCr_ID. CATA SASE_CHGICE. muM_rirS ang
the 16t of wEYS to the SCATCR :racess That .a8 .ot created ¢
Um WEYS(INDEX) » {(nusber 3¢ ctays)
m“l(lml L NP REYS) ® Jhgyl L8t “eceives}
elee 1 ¢ (REQEST » MCN OONE: zren
CREATE (PRINT_FILE. PRINT (D)
accept (SCARCH_ID. Nym | eTLES) ¢-cm SEARCR
ET_SEARCH _ XND(II!WCN 0. INOEY
ceena NUR_nEYS INDEX . ane he 1ot ov =£1§ £ii-Tec at By INGEs ta e
PRINT 'n.t ocess That wae :roaced)
Leccoot the set sé FILE NamCs tne SEARC~ :r:
and the vet o7 FILD Mn to cthe PRINT FILL o
ng 1 f
end do

ond GUEVE _maNacEr

terg NUM _FILES

tasy SEARCH

declare
W _sEYS. 1. m_FILES, SBaRCH (L [ATA JAGE_I=CICE TESER
nEYE). FILE NamBES (100" . Flui _Hamg TRIMG ¢t W0

segin
caccept SEARCH (0. DATA S43C _IWOICE. ~wum s€rd arc he et 37 ni'3
K EURRANAGER >

On Speciiiad Jota DASE JLTECEAr, siier
NUN_FILES o 2
10 farever

reae FILE_NamE) #rom gairectary

i <and 8¢ Jdile recerved: rren

enit de

ong 14

18 AL REYS_IN_FILE FILE NAMC. tue wQvs, v€YE. v __ihGTHE: tnen
nUR_FILESenum_FILES. 1
#ILE_NarES (UM _FILES (96 ILS _Namg

one 14
ong e
(song SEARCM _DONE. SEARCKW_ID. NUM_TILCS. ane tne soc o FILO =
te ,Nmn
ene SEAMRCH

cask PRINT_FILE

re

N 8. NUM_FILES. I INTECEN

mﬂg.num STRING: L 8O

Seqan
\uun sutpus file "TRXT _MATCH OAT~:

t MU _KEYS and the 1ot of KEVE from QUEUE_“ANAQER and write

the 108 of KEYS to “TEXT_MATCM, Date 3

NUM_FILES snd the set of FILE NAMCs ¢ram GUEUE _MANAGE™ ane
write the set of FILE NaGe ta "TExT_mATCH DaT”

ene PRINT FILE

AN L e TEXT SEARCH (D)

-41-

PETRI NETS

ll""’ll‘ll‘llllllllw

(@ munewive swssae

ﬂ Ja.. | N o= == |I[|

e | s
vt | <

e

-4 6=

;!bi L e

£
DA

G

o o e B -

[wessane sesrmaurion i)

-49-

o

ALk imeakingil 3

a4

i
g
8
| 4
w_ .
i . u
i ;
}
{
!
L : _
g
i
i
E

e a e v e o e e aaagti Bty P 1 s W ORI R0 37 A P a5 by A

HUMAN

OPERATOR

CONTROL

SCREEN_UPDATE

e SR Gty
= JONETS o
-t _seact

-—

-

e b e AR AR A S e b A8 S

B e

[ain Trasnc oispavdy |

[R

' Yoo Gt Sl Gung Sum) PDEN

TECHNICAL REPORTS DISTRIBUTION LIST

Engineering Psychology Group
TECHNICAL REPORTS DISTRIBUTION LIST

i
1
a
{
OFFICE OF NAVAL RESEARCH j
;
:

0SD

CAPT Paul R. Chatelier

Office of the Deputy Under
Secretary of Defense

OUSDRE (E&LS)

Pentagon, Room 3D129

Washington, DC 20301

Dr. Dennis Leedom

Office of the Deputy Under
Secretary of Defense (C3I)

Pentagon

Washington, DC 203901

Department of the Navv

Engineering Psychology-Group

Office of Naval Research

Code 442 EP

Arlington, VA 22217 (2 cys.)

Aviation & Aerospace Technology
Programs

Code 210G

Office of Naval Research

800 North Quincy Street

Arlington, VA 22217

Communication & Computer
Technology Programs

Code 240

Office of Naval Research

800 North Quingy Street

Arlington, VA 22217

Information Sciences Division
Code 433

Office of Naval Research

800 North Quincy Street
Arlington, VA 22217

Dr. J. S. Lawson

Naval Electronic Systems Command
NELEX-06T

wWashington, DC 20360

=57=

Department of the Navy

Tactical Development & Evaluation
Support Programs

Code 230

Office of Naval Research

800 North Quincy Street

Arlington, VA 22217

Manpower, Personnel & Training
Programs

Code 270

Office of Naval Research

800 North Quincy Street

Arlington, VA 22217

Special Assistant for Marine Corpos
Matters

Code 100M

Office of Naval Research

800 North Quincy Street

Arlington, VA 22217 .

CDR James Offutt, Officer-in-Charge
ONR Detachment

1030 East Green Street

Pasadena, CA 91106

Director

Naval Research Laboratory
Technical Information Division
Code 2627

Washington, DC 20375

Dr. Michael Melich
Communications Sciences Division
Code 7500

Naval Research Laboratory
Washington, DC 20375

Dr. Robert E. Conley K
Office of Chief of Naval Operations
Command and Control

OP-094H
Washington, DC 20350

>4

g Pond peod peend P!

Department of the Navy

Dr. Robert G. Smith

Office of the Chief of Naval
Op- <ations, OP987H

Personnel Logistics Plans

Washington, DC 20350

Dr. Alfred F. Smode

Training Analysis and Evaluation
Group

Orlando, FL 32813

Dr. Gary Poock

Operations Research Department

Naval Postgraduate School

Monterey, CA 93940

Dean of Research Administration
Naval Postgraduate School
Monterey, CA 93940

Dr. L. Chmura

Naval Research Laboratory
Code 7592

Computer Sciences & Systems
Washington, DC 20375

Chief, C3 pivision
Development Center
MCDEC
Quantico, vA 22134
Commander

Naval Air Systems Command
Human Factors Programs
NAVAIR 334a
Washington, DC 20361
Commander

Naval Air Systems Command
Crew Station Design
NAVAIR 5313
Washington, DC 20361

Commander

Naval Electronics Systems Command
Human Factors Engindering Branch
Code 81323

Washington, DC 20360

Dr. George Moeller

Human Factors Engineering Branch
Submarine Medical Research Lab
Naval Submarine Base

Groton, CT 06340

"*"""""""'-'-lllllllIl!llIl!IllllIl!n.....'.'-.'...--',..'-__'_F"

Department of the Navy

Combat Control Systems Department
Code 35

Naval Underwater Systems Center
Newport, RI 02840

Human Factors Department

Code N-71

Naval Training Equipment Center
Orlando, FL 32813

CDR Norman E. Lane

Code N-7A

Naval Training Equipment Center
Orlando, PL 32813

Dr. A.L. Slafkosky

Scientific Advisor

Commandant of the Marine Corps
Code RD-1
Washington, DC 20380

HQS, U. S. Marine Corps
ATTN: CCA40 (Major Pennell)
Washington, DC 20380

Commanding Officer
MCTSSA

Marine Corps Base

Camp Pendleton, CA 92055

Human Factors Technology Admin.
Office of Naval Technology
Code MAT 0722

800 North Quincy Street
Arlington, VA 22217

Mr. Lawrence Lindley
Naval Avionics Center
Code 821

6000 East 2lst Street
Indianapolis, IN 46218

Mr. Philip Andrews

Naval Sea Systems Command
NAVSEA 03416

Washington, DC 20362

Larry Olmstead

Naval Surface Weapons Center,
NSWC/DL

Code N-32

Dahlgren, VA 22448

-58-

Department of the Navy

Mr. Ronald Leask

Naval Underwater Systems Center
Code 3251

Smith Street

New London, CT 06320

Navy Personnel Research and
Development Center

Planning & Appraisal Division

San Diego, CA 92152

Mr. Stephen Merriman

Human Factors Engineering Div.
Naval Air Development Center
Warminster, PA 18974

Mr. Jeffrey Grossman

Human Factors Branch

Code 3152

Naval Weapons Center

China Lake, CA 93555

Dean of Academic Departments
U. S. Naval Academy
Annapolis, MD 21402

Dr. S. Schiflett

Human Factors Section

Systems Engineering Test
Directorate

U.S. Naval Air Test Center

Patuxent River, MD 20670

CDR C.
i Code 55
i Naval Postgraduate School

Monterey, CA 93940

Hutchins

Qffice of the Chief of Naval
Operations (OP-115)

ATTN: Dr. Robert Carroll

Washington, DC 20350

oe—

A]

Mr. Marshall R. Potter

Project Management Support Branch

System Effectiveness & Component
Engineering Division

Code NAVELEX 8143

Washington, DC 20360

I
|
1
|
|

Department of the Navy

Commanding Officer
Naval Health Research Center
San Diego, CA 92135

Commander, Naval Air Force,
U. §. Pacific Fleet
ATTN: Dr. James McGrath
Naval Air Station, North Island
San Diego, CA 92135

Dr. Robert Blanchard

Navy Personnel Research and
Development Center

Command and Support Systems

San Diego, CA 92152

Human Factors Engineering Branch
Code 1226

Pacific Missile Test Center
Point Mugu, CA 93042

Mr. John Impagliazzo

Code 101

Naval Underwater Systems Center
Newport, RI 02840

Mr. Harry Crisp

Code N~51

Combat Systems Department
Naval Surface Weapons Center
Dahlgren, VA 22448

Department of the Armv

Mr. J. Barber

HQS, Department of the Army
DAPE-MBR
Washington, DC 20310

Dr. Edgar M. Johnson
Technical Director

U. S. Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

Director, Organizations and
Systems Research Laboratory
U. S. Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

Department of the Army

Technical Director
U.S. Army Human Engineering Labs
Aberdeen Proving Ground, MD 21005

Department of the Air Force

U. S. Air Force Office of
Scientific Research

Life Sciences Directorate, NL

Bolling Air Force Base

Washington, DC 20332

AFHRL/LRS TDC
ATTN: Susan Ewing
Wright-Patterson AFB, OB 45433

Chief, Systems Engineering Branch
Human Engineering Division

USAF AMRL/HES

Wright-Patterson AFB, OH 45433

Dr. Earl Alluisi
Chief Scientist

AFHRL /CCN

Brooks AFB, TX 78235

Foreign Addresses

Director, Human Factors Wing
Defence & Civil Institute of

Environmental Medicine
Post Office Box 2000
Downsview, Ontario M3M 3B9
CANADA

Other Government Agencies

Defengse Technical Information
Center

Cameron Station, Bldg. 5

Alexandria, VA 22314 (12 cys.)

Dr. Clint Kelly

Director, System Sciences Office

Defense Advanced Research
Projects Agency

1400 Wilson Boulevard

Arlington, VA 22209

Other Government Agencies

Dr. M. Montemerlo

Human Factors & Simulation
Technology, RTE-6

NASA HQS

Washington, DC 20546

Other Organizations

Dr. Jesse COrlansky

Institute for Defense Analyses
1801 N. Beauregard Street
Alexandria, VA 22311

Dr. Robert T. Hennessy

NAS - National Research Council
(COHF)

2101 Constitution Avenue, N.W.

Washington, DC 20418

Dr. Robert C. Williges

Department of Industrial
Engineering and OR

Virginia Polytechnic Institute
and State University

130 Whittemore Halle

Blacksburg, VA 24061

Mr. Edward M. Connelly

Performance Measurement
Associates, Inc.

410 Pine Street, S.E.

Suite 300

Vienna, VA 22180

Dr. J. O. Chinnis

Decision Science Consortium
Suite 721

7700 Leesburg Pike

Falls Church, VA 22043

Dr. Richard Pew

Bolt, Beranek & Newman, Inc.
50 Moulton Street

Cambridge, MA 02238

Psychological Documents (3 cys.)
ATTN: Dr. J. G. Darley

N-56S Elliott Hall

University of Minnesota
Minneapolisg, MN 55455

[7:Xa)

-

ikl

et [Fea eetadls i

